Обмен холестерина биохимия

Биосинтез холестерина

Обмен холестерина биохимия

В 40-60-х годах нашего столетия К. Блох и сотр. в опытах с использованием ацетата, меченного 14С по метильной и карбоксильной группам, показали, что оба атома углерода уксусной кислоты включаются в холестерин печени приблизительно в одинаковых количествах. Кроме того, было доказано, что все атомы углерода холестерина происходят из ацетата.

В дальнейшем благодаря работам Ф. Линена, Г. Попьяка, Дж. Корн-форта, А.Н.

Климова и других исследователей были выяснены основные детали ферментативного синтеза холестерина, насчитывающего более 35 энзиматических реакций.

В синтезе холестерина можно выделить три основные стадии: I – превращение активного ацетата в мевалоновую кислоту, II – образование сквалена из мевалоновой кислоты, III – циклизация сквалена в холестерин.

Рассмотрим стадию превращения активного ацетата в мевалоновую кислоту. Начальным этапом синтеза мевалоновой кислоты из ацетил-КоА является образование ацетоацетил-КоА посредством обратимой тиолазной реакции:

Затем при последующей конденсации ацетоацетил-КоА с 3-й молекулой ацетил-КоА при участии гидроксиметилглутарил-КоА-синтазы (ГМГ-КоА-синтаза) образуется β-гидрокси-β-метилглутарил-КоА:

Далее β-гидрокси-β-метилглутарил-КоА под действием регуляторного фермента НАДФ-зависимой гидроксиметилглутарил-КоА-редуктазы (ГМГ-КоА-редуктаза) в результате восстановления одной из карбоксильных групп и отщепления HS-KoA превращается в мевалоновую кислоту:

ГМГ-КоА-редуктазная реакция – первая практически необратимая реакция в цепи биосинтеза холестерина. Она протекает со значительной потерей свободной энергии (около 33,6 кДж). Установлено, что данная реакция лимитирует скорость биосинтеза холестерина.

Наряду с классическим путем биосинтеза мевалоновой кислоты имеется второй путь, в котором в качестве промежуточного субстрата, по-видимому, образуется не β-гидрокси-β-метилглутарил-КоА, а β-гидрокси-β-метилглутарил-S-АПБ.

Реакции этого пути идентичны начальным стадиям биосинтеза жирных кислот вплоть до образования ацетоацетил-S-АПБ. В образовании мевалоновой кислоты по этому пути принимает участие ацетил-КоА-карбоксилаза – фермент, осуществляющий превращение ацетил-КоА в малонил-КоА.

Оптимальное соотношение малонил-КоА и ацетил-КоА для синтеза мевалоновой кислоты – 2 молекулы ацетил-КоА на 1 молекулу малонил-КоА.

Участие малонил-КоА – основного субстрата биосинтеза жирных кислот в образовании мевалоновой кислоты и различных полиизопреноидов показано для ряда биологических объектов: печени голубя и крысы, молочной железы кролика, бесклеточных дрожжевых экстрактов.

Этот путь биосинтеза мевалоновой кислоты отмечен преимущественно в цитозоле клеток печени. Существенную роль в образовании мевалоната в данном случае играет ГМГ-КоА-редуктаза, обнаруженная в растворимой фракции печени крысы и неидентичная микросомному ферменту по ряду кинетических и регуляторных свойств.

Регуляция второго пути биосинтеза мевалоновой кислоты при ряде воздействий (голодание, кормление холестерином, введение поверхностно-активного вещества тритона WR-1339) отличается от регуляции первого пути, в котором принимает участие микросомная редуктаза.

Эти данные свидетельствуют о существовании двух автономных систем биосинтеза мевалоновой кислоты. Физиологическая роль второго пути окончательно не изучена.

Полагают, что он имеет определенное значение не только для синтеза веществ нестероидной природы, таких, как боковая цепь убихинона и уникального основания N6-(Δ2-изопентил)-аденозина некоторых тРНК, но и для биосинтеза стероидов (А.Н. Климов, Э.Д. Полякова).

На II стадии синтеза холестерина мевалоновая кислота превращается в сквален. Реакции II стадии начинаются с фосфорилирования мевалоновой кислоты с помощью АТФ. В результате образуется 5-фосфорный эфир, а затем 5-пирофосфорный эфир мевалоновой кислоты:

5-пирофосфомевалоновая кислота в результате последующего фосфорилирования третичной гидроксильной группы образует нестабильный промежуточный продукт – 3-фосфо-5-пирофосфомевалоновую кислоту, которая, декарбоксилируясь и теряя остаток фосфорной кислоты, превращается в изопентенилпирофосфат. Последний изомеризуется в диметилаллилпирофосфат:

Затем оба изомерных изопентенилпирофосфата (диметилаллилпирофос-фат и изопентенилпирофосфат) конденсируются с высвобождением пи-рофосфата и образованием геранилпирофосфата:

К геранилпирофосфату вновь присоединяется изопентенилпирофосфат. В результате этой реакции образуется фарнезилпирофосфат:

В заключительной реакции данной стадии в результате НАДФН-за-висимой восстановительной конденсации 2 молекул фарнезилпирофосфата образуется сквален:

На III стадии биосинтеза холестерина сквален под влиянием сквален-оксидоциклазы циклизируется с образованием ланостерина.

Дальнейший процесс превращения ланостерина в холестерин включает ряд реакций, сопровождающихся удалением трех метильных групп, насыщением двойной связи в боковой цепи и перемещением двойной связи в кольце В из положения 8, 9 в положение 5, 6 (детально эти последние реакции еще не изучены):

Приводим общую схему синтеза холестерина:

Начиная со сквалена, все промежуточные продукты биосинтеза холестерина (включая и холестерин) нерастворимы в водной среде. Поэтому они участвуют в конечных реакциях биосинтеза холестерина, будучи связанными со стеринпереносящими белками (СПБ). Это обеспечивает их растворимость в цитозоле клетки и протекание соответствующих реакций.

Данный факт имеет важное значение и для вхождения холестерина в клеточные мембраны, окисления в желчные кислоты, превращения в стероидные гормоны. Как отмечалось, реакцией, регулирующей скорость биосинтеза холестерина в целом, является восстановление β-гидрокси-β-метилглутарил-КоА в мевалоновую кислоту, катализируемое ГМГ-КоА-редуктазой.

Данный фермент испытывает регуляторное воздействие ряда

факторов. В частности, скорость синтеза редуктазы в печени подвержена четким суточным колебаниям: максимум ее приходится на полночь, а минимум – на утренние часы.

Активность ГМГ-редуктазы возрастает при введении инсулина и тире-оидных гормонов. Это приводит к усилению синтеза холестерина и повышению его уровня в крови.

При голодании, тиреоидэктомии, введение глюкагона и глюкокорти-коидов, напротив, отмечается угнетение синтеза холестерина, что прежде всего связано со снижением активности ГМГ-КоА-редуктазы.

Предыдущая страница | Следующая страница

СОДЕРЖАНИЕ

Еще по теме:

  • Биосинтез холестерина – Наглядная биохимия

Источник: //www.xumuk.ru/biologhim/169.html

5 циклов синтеза холестерола — от чего зависит и почему нарушается процесс холестеринового обмена?

Обмен холестерина биохимия

Постоянный синтез холестерина в организме обеспечивает работа печени. Но, кроме этого, источником соединение выступает кишечник, где обрабатывается и синтезируется липид. Реакция также происходит в коже человека. Важная роль холестерина и его функции значительна. Он позволяет вырабатывать витамин Д и гормоны. Но избыток приводит к накоплению холестерола, что опасно для работы сердца.

Общая характеристика

Холестерин получил название в 1769 году от французского химика Пулетье де ла Саль. Первоначально слово обозначало выработку вещества, которую выделяли желчные камни. В буквальном смысле его стоит переводить как «твердая желчь».

Но со временем ученые доказали, что вещество — это природный спирт, поэтому корректнее его называть холестерол. Экзогенный холестерин необходим организму для выработки витамина Д, он обеспечивает энтерогепатический оборот желчных кислот, для создания клеточных мембран и транспортировки эйкозаноидов.

Схема создания липида сложная и включает несколько этапов.

Где синтезируется?

Синтез холестерина происходит в таких частях тела:

Биосинтез холестерина — один из важнейших процессов, который происходит в теле человека. Большую часть (выше 50%) экзогенного холестерина синтезирует печень, потому что это регуляторный источник цитозоли и эндоплазматического ретикулюма. В этом же органе начинается производство гликогена.

Ресинтез происходит в кишечнике: жирные кислоты соединяются со спиртами и поступают в кровь, что позволяют уменьшить их дегенеративное влияние на мембраны. Активность выработки зависит от наличия в организме сериодов, витамина D и некоторых соединений, которые отвечают за транспортировку веществ.

Основные этапы метаболизма и пути использования — это производство мевалоновой кислоты, изопентенилпирофосфата, сквалена, ланостерина, холестерина.

Цикл создания

Последовательность создания и обмена холестерина в организме всегда строго одинакова.

Особенности обмена холестерина в организме человека заключаются в сложности его создания.

Последовательность всегда строго одинакова. В этом процессе участвуют ферменты, которые проходят несколько биохимических действий.

Нарушение цикла грозит недостатком или избытком липида, что приводит к серьезным заболеваниям.

Синтез мевалоновой кислоты

Обмен холестерина начинается с создания этого соединения с помощью ГМГ-КоА-редуктаза. На первом этапе ключевой фермент ацетил-CoA-ацетилтрасфераза при слиянии двух молекул влияет на производство коэнзима А.

В этом процессе превращения также участвует гидроксиметил, который позволяет из ацетила и ацетоацетила получить 3-гидрокси-3-метилглутарил-CoA. После от этого соединения отходит кофермент А, чье молекулярная формула выглядит как HS-CoA.

Это приводит к синтезу мевалоната.

Производство изопентенилпирофосфата

На этой стадии синтез протекает в 4 реакции. Сначала мевалонат вместе с мевалоткиназом путем фосфорилирования становится 5-фосфомевалонатом.

Затем на второй операции в обмене веществ участвует формула фосфомевалоната, которая превращается в 5-пирофосфомевалонат. После на него влияет гормон кеназ, что позволяет синтезировать 3-фосфо-5-пирофосфомевалонатом.

На последнем этапе происходит декарбоксирование и дефосфорилирование, в результате чего синтезируются изопентинилпирофосфат.

Выработка сквалена

Одним из этапов синтеза является формирование и выработка сквалена — углеводорода.

Это коротки этап в формировании спирта. Регуляторным ферментов является гидроксиметилглутарил.

Скваленовый путь начинается с того, что на выработанный фермент путем изомеризации влияет диметилаллилпирофосфат. После синтез липидов обеспечивает появление электрной свези между ферментами, что приводит к конденсированию и производству геранилпирофосфата.

Но при этом от связи отходит часть пирофосфата, которая появилась при биосинтезе холестерина на втором этапе.

Производство ланостерина

На этом этапе образование эфиров в печени С5 изопентенилпирофосфата соединяется с 10 геранилпирофосфата. Затем происходит конденсация и образуется фарнезилпирофосфат. От него отходит часть, которая называется пирофосфата. На последней стадии этого этапа две молекулы фарнезилпирофосфатных соеднияются и конденсируются, что создает скавален, через распад пирофосфата в клетки.

Синтез липида

Это ключевой и завершающий момент, в котором процесс включает 5 реакций. Метаболизм холестерина начинается с окисления с участием С14 ланостерина. В результате это активирует производство14-десметилланостерина.

Из соединения выпадают две С4 и органелла становится зимостеролом. Следующая операция приводит к образованию δ-7,24- холестадиенола. Затем меняются двойные связи и образуется демостерол.

На последнем этапе восстанавливается взаимодействие и появляется сам холестерин.

От чего зависит?

По подсчетам ученых, в день производится от 0,5 до 0,8 грамм холестерола.

Биохимические процессы холестерола зависят от микрофлоры кишечника, так как этот орган влияет на всасывание жиров.

Цикл создания эндогенного соединения и обмен эфиров осуществляется при помощи приблизительно 30 реакций. Основные клетки, которые участвуют в этом действии — гепатоциты печени, в которых содержится ретикулин. Эта молекула является группой жиров и углеводов.

Холестерин должен контролироваться, так как избыток или недостаток приводит к серьезным заболеваниям. Биохимия и синтез холестерола зависит от микрофлоры организма, в том числе кишечника. Этот орган влияет на всасывание жиров, образования эфиров и трансформации стиролов. Большую роль играет уровень фосфолипидов, которые транспортируют жиры.

Важно поддерживать их количество, так как это контролирует содержание холестерола в крови.

Избыток холестерина

Из-за недостатка физической активности, некачественного питания и переедания появляются проблемы с накоплением пищевого холестерина. Такое нарушение появляется у людей, имеющим вредные привычки. Из-за этого на сосудах начинают скапливаться холестериновые бляшки, которые мешают циркуляции крови. В результате развиваются заболевания сердца.

Нарушение холестеринового обмена происходит из-за таких болезней:

  • желчные нарушения;
  • патологии печени и почек;
  • эндокринные заболевания.

Недостаток метаболитов

Регуляция синтеза холестерина происходит благодаря питанию и спорту. Высокая активность (занятие спортом, танцами) сильно влияет на биосинтез холестерола.

Если при этом человек не употребляет алкоголь и не курит, то у него активно снижается количество природного спирта в тканях организма. Врачи рекомендуют для уменьшения уровня молекул соблюдать правильную диету, в которой превалирует углеводная пища.

Синтез подавляется также при помощи лекарств. Но люди, у которых нарушен процесс синтеза, страдают от проблем с давлением и рискуют получить сердечный приступ.

Источник: //EtoHolesterin.ru/hol/drugoe/sintez-holesterina.html

MedInfoPortal.Ru
Добавить комментарий